
Optimization of wind farm design taking into account 
uncertainty in input parameters 

Abstract 

Optimization of wind farm design with risk assessment 
is presented in this paper. The net present value (NPV) 
is used to evaluate the yield of the laid-down capital of 
the wind farm. Monte Carlo simulation method is 
applied to obtain probability distribution of the objective 
function. The uncertainties of the wind speed and 
direction and power curve of the wind turbine are 
studied by incorporating them in the annual energy 
production (AEP) uncertainty, which can be directly 
translated into NPV uncertainty. Differential Evolution 
(DE) is used as the optimization algorithm. 

Keywords: wind farm, siting, Differential Evolution, 
Monte-Carlo simulation 

1 INTRODUCTION 

The wind energy sector has developed rapidly in recent 
decades and experience has demonstrated the 
beneficial economic, environmental and social 
outcomes from the commissioning of wind power [1]. 
However, electricity produced by wind installations 
currently is more expensive compared to conventional 
power generation such as from fossil fuels or hydro 
power [2]. The incentive to increase attractiveness of 
wind projects to investors has resulted in the wind 
energy systems optimization being an active area of 
research [3]. The optimization of the wind farm design is 
one of the main topics for the reason that high 
improvements in cost efficiency can be achieved at the 
design stage of the wind farm project [4].  

In the pioneering work of [5] on wind farm design 
optimization, the authors proposed a simple objective 
function to maximize energy output with minimum 
installation cost. The study demonstrated that the 
application of a genetic algorithm (GA) gives good 
quality results in maximizing the objective function 
value. Subsequently, a number of further articles have 
been published in the field of wind farm optimization. It 
should be noted that GA has been used most frequently 
[5-16], although other optimization techniques have also 
been employed. For instance, greedy heuristic [17, 18], 
simulated annealing [19], swarm optimization [20] and 
pattern search [21] have all been applied to achieve 
refined results.  

Wind farm projects typically involve significant financial 
risks. The uncertainty in the energy production due to 
the intermittent nature of the wind and future costs and 
prices are the main contributors to the investment risk 

[2]. To date, few articles have considered risks when 
optimizing wind farms [23], [24]. Uncertainties arising 
from the wind and power curve models have been 
taken into account by the former for optimizing the 
capacity of the farm by looking at different wind 
scenarios. The latter investigates exclusively the 
influence of wind parameters uncertainty on the 
optimum layout on the basis of the Utility Theory.  

The objective of this paper is to present an approach of 
finding the optimum locations, hub heights and rotor 
diameters of the wind turbines at a given site while 
taking into account risks caused by the uncertainties of 
the wind farm performance. The stochastic objective 
function uses statistical models of uncertainties of wind 
velocity and direction and the power output of individual 
turbines at given conditions. Objective function values 
are obtained by Monte Carlo simulation. Economical 
risks due to uncertainties of costs and future energy 
prices were ruled outside the scope of this paper; 
particularly the uncertainty of electricity price is largely 
dependent on energy policy decisions and thus very 
difficult to estimate. This paper therefore assumes that 
wind energy producer will receive price guaranteed with 
feed-in tariff. 

The optimization problem is solved by differential 
evolution (DE), a type of evolutionary algorithm (EA). 
The optimized design should meet the interest of 
investors by having a high profit under the condition of a 
reasonable risk. Rather than using the mean value or 
the one with the highest probability, the objective of the 
algorithm is to maximize the profit for a chosen certainty 
level. It means we are looking at a boundary value, 
which will be exceeded with a given likelihood, reducing 
the risk to fail the expectations. A Matlab tool has been 
developed that optimizes the wind farm design 
according to the methodology described below. 

2 Modelling of the Wind Farm 

Wind farm model and assumptions made in the study 
are presented in this section.  

2.1 Wind model 
Wind behavior is intermittent, i.e. the wind 
speed and direction vary with time and height. For most 
sites, Weibull distribution is an efficient statistical 
representation of the wind conditions at a site [25].  
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where V is the wind speed, m/s; and k, c are the shape 
and scale (m/s) parameters of the function, 
respectively. Both parameters of the Weibull function 

are dependent on the value of the mean wind speed  ̅ 

and standard deviation   , which shows how dispersed 
the data (wind speed) is around the mean value [25].   
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where   is a gamma function.  

The wind speed increases with height and is influenced 
by the roughness class of the terrain and atmospheric 
stability. The following simple non-physical expression, 
called the power law, is widely used for estimating wind 
speed   at a certain height  . It gives best results when 
the height is above 50 m [26]. 
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where   is the wind gradient exponent (or exponent for 

wind shear) that shows the roughness of the terrain,    
is measured wind speed at a height   . 

This empirical formula gives a reasonable result as long 
as the wind shear coefficient   is selected correctly. 
Values of this parameter can change depending on 
complexity of the site, the wind direction, and time of 
the year [26].   

2.2 Wake model  
Compared with single turbine sites, wind farms give the 
advantages of reduced running and installation costs 
per turbine, but energy losses per turbine increase. The 
main reason for the lower efficiency of power production 
is the wake effect. The rotating blades of a turbine work 
as a barrier for the air stream, and consequently, the air 
flow behind the turbine is characterized by lower 
velocity and higher turbulence intensity [27]. This is a 
significant issue for wind farms as it decreases power 
production and increases mechanical loads on turbines 
placed in turbulent regions. It is important to estimate 
the expansion region of the wake and to calculate the 
deficit of the wind speed depending on the distance 
from the affecting turbine, as it directly influences the 
wind farm layout and choice of wind turbine type. Large 
spacing between turbines reduces the wake effect but 
increases the area needed for installation of the farm 
and thus other expenditure, such as land rents and 
infrastructure costs. 

Simple empirical wake model developed by Jensen is 
used in the paper. The advantages of the model are its 
simplicity, low computation cost, and relatively effective 
estimations of wind speed losses behind the turbine 
[28]. 

The Jensen wake model [28], which assumes linearity 
of wake expansion, is presented in the following 
equations: 

 

Figure 1: Schematic view of wake effect 
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where    is the free wind speed before the turbine, m/s; 
   is the turbine thrust coefficient;    is the wake decay 

constant;   is the distance at which the wind speed is 

evalueted, m; and    is the diameter of the blades, m.  

The wake decay constant shows how the “shadow 
cone” increases in meters per meter behind the rotor, 
i.e., the turbulent area created by the turbine broadens. 
The typical value for wind farms on land is 0.075 m [25], 
but in the case of a wind park where several rows of 
turbines are installed, the opening angle of the wake 
cone increases after a turbine which is already within 
the wake of another turbine.  

The thrust coefficient    is the relation of the thrust 
force (in other words the force with which 
the wind acts on the turbine) and dynamic pressure of 
the air flow multiplied by the swept area. A theoretical 
value of    = 8/9 is used in the paper [25]. 

The impact of several turbines on the energy output of a 
turbine downstream needs to be taken into account. 
The following equation is used: 
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where    is the number of wind turbines influencing the 

turbine i;     is the undisturbed wind speed, m/s;     is 

the wind speed at the turbine inlet, m/s;       is the 

downstream wind speed of the j turbine at the position 
of the i turbine, m/s. 

Estimation of the expansion region of the wake and 
calculating the deficit of the wind speed depending on 
the distance from the affecting turbine is important, as it 
directly influences the wind farm layout and choice of 
wind turbine type. 

 

  



2.3 Terrain model  

Wind resources depend on the complexity of the terrain, 
i.e. wind speed distribution changes with location and 
direction. Terrain elevation is not considered in this 
study meaning that wind is assumed to be 
homogeneous throughout the wind farm project land.  

The terrain has a rectangular shape, where it is 
possible to add forbidden zones for wind turbine 
installation. The wind gradient exponent is chosen for 
flat open terrains equaling 0.15 [29]. The example 
terrain used in this study is depicted below. 

 

Figure 2: Terrain model 

Allowed and forbidden zones for wind turbine 
installation are represented with yellow and red color, 
respectively. 

2.4 Power curve model 

The power curve is a characteristic of the turbine power 
output and depends on the type and size of the turbine, 
wind conditions at a site, and the period of time in 
operation. Electrical power produced by the wind 
turbine at a certain wind speed can be found by the 
following equation [25]: 
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where      is the power of the flow;    is the power 

coefficient;   is the drive train efficiency. 

However for this paper it is assumed that the power 
curve is provided by the manufacturer. Example of the 
power curve is depicted in Figure 6.  

2.5 Economic model of the farm 

Cash flows, time and risk are key factors determining 
the financial aspects of wind farm projects and a variety 
of techniques are used to evaluate the feasibility of 
projects. Previous research has shown that results of 
the wind farm optimization are highly sensitive to the 
choice of the objective function [11, 22].  Several 
studies suggest that net present value (NPV) is the 
most appropriate indicator for wind farm investment 
decision [14, 16], which is also one of the most 
universally accepted criteria. 

The main components of the wind farms’ economics 
such as initial investments Cinv,t, operation and 

maintenance (O&M) costs COM,t and income It are 
considered for calculating NPV.   
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The income depends on the power produced by the 
turbines of the wind farm per year and cost of power at 
the electricity market. To analyze the cost-effectiveness 
of a project, future earnings should be conveyed to the 
present for comparison with investment costs.   
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where   is the number of turbines; T is the project life 

time;     is the cost of energy for year  , €/MWh;       is 
the energy produced by  

th
 turbine at time  , MW;    is 

the discounting parameter. 
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p denotes the interest (discount) rate during the year t. 

One of the assumptions made in the paper is that future 
electricity selling price is secured with feed-in-tariff over 
the life time of the wind farm project. Consequently, 
minimization of cost of energy and maximization of NPV 
should give the same optimum results. At the paper 
optimization of the NPV is performed, because it gives 
a clear picture to investor about the lay-down capital of 
investments.   

Wind farm annual energy production (AEP) can be 
determined by the wind turbine power curve and the 
wind velocity frequency distribution at the hub height of 
the turbines [25]. For calculating the AEP, the average 
values of wind frequency distribution fk,q(V) and power 
output Pq(V) are multiplied at 1 m/s intervals q of wind 
speed in each direction D. The product is summed over 
a range of wind speeds q starting from the minimum Vin 
and reaching to maximum Vout operational wind speed, 
and then summed for all directions D. The following 
equation for the calculation of the AEP considers the 
total effectiveness of the power output of the wind farm 
wk,i (considering wake losses) and the share of time in 
which the N turbine is in operation Top,t.  
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The second component of the NPV, the capital cost of a 
project, includes the cost for design work, purchase of 
equipment, rent of land for onshore projects, civil works, 
electrical infrastructure costs, etc. Typical relations 
between expenditures for different capital cost 
components are given in [30]. To obtain the investment 
costs of turbines with different diameters and heights, 
data from [31] has been used. 

And the last component is the costs for operation and 
maintenance (O&M). Like any other equipment, a wind 
turbine requires attendance during its lifetime. Costs for 



operation and maintenance (O&M) depend on the types 
and size of the turbines. Estimation of the O&M costs is 
very difficult, given that at this planning stage of the 
project many parameters are quite rough. O&M costs 
assumed to be fixed over the life time of the project 
[30]. 

3 Methodology 
Based on the optimum solution, the design parameters 
of the wind farm are defined in the given area: i) 
number of wind turbines planned to be installed; ii) 
location of each turbine; iii) type and size of the wind 
turbines (rated power capacity, rotor diameter, hub 
height, etc.). 

3.1 Existing issues 

The problem of optimization of wind farm layout is not 
trivial for the following reasons: 

- The problem is not separable: the optimum of 
each decision variable cannot be determined in 
isolation, but depends on the values of other variables. 
- The objective function is likely to be highly 
multimodal. 
- The decision variables include both discrete 
and continuous variables, which makes the problem 
also non-differentiable and prevents the use of 
traditional gradient-based optimization methods. The 
independent variables are uncertain.  
- Depending on the number of variables, the 
number of possible wind farm design variants can reach 
a huge figure. An equation for calculating the total 
number of alternatives for n installed turbines is given 
below:     
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where l is the number of possible locations; n is the 
number of turbines planned to be installed; h is the 
number of hub height alternatives; t is the number of the 
turbine types. Growth of the number of variables entails 
significant increase of K. 

3.2 Monte-Carlo simulation 

Monte-Carlo simulation is applied to include risk in the 
economic model of the wind farm. This technique uses 
probability distributions of input parameters instead of 
assumed expected values of these parameters [32]. 
Calculations are repeated with samples of input 
parameters, which are provided with given distributions. 
The procedure allows the probability distribution for the 
desired output parameter to be obtained.  

Implementation of the project is associated with a 
number of risks, in particular the uncertainty in energy 
production and future costs and prices. The scope of 
this work is to study the effect of the amount of energy 
produced at a profit, by incorporating uncertainty in the 
power curve and wind speed and direction distribution. 
All uncertainties incorporated in the model are assumed 
to be independent.  

The wind statistical model [33] is used in this work, 
where the scale factor c is replaced by the mean wind 

speed  ̅:  
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This model is used because the distribution of the mean 
wind speed is available while that of the scale factor is 
not.   

The data [34] of mean wind speed demonstrate 
lognormal distribution (Figure 4), which is applied for 
the modeling.  

 

Figure 3: Annual deviation of the wind speed [34] 

 

Figure 4: Annual mean wind speed distribution [34] 

Two types of uncertainties can be distinguished. First of 
all, there are uncertainties inherent to physics, for 
example, due to the volatile nature of the wind. Model 
and measurement uncertainties form a second group. 
For instance, the estimation of the wind speed at the 
hub height contains the errors of measurement along 
with errors due to an imprecise formula for calculation. 
Likewise, the power curve provided by manufacturer is 
correct for conditions during the test only. The wind 
gradient, air density, turbulence intensity and control 
strategy cause the power output to differ from the 
measured values supplied by manufacturer [35, 36, 37]. 



Study [35] explicitly explains and defines the nature of 
uncertainties for the wind speed. The uncertainties from 
the wind are divided at four main categories: i) 
measurement, ii) long–term resource estimation, iii) 
wind resource variability and iv) site assessment 
uncertainties.  By following recommendation of this 
study the overall uncertainty of the mean wind speed 
and Weibull shape parameter k has been obtained for 
flat terrain.  

The work [33] demonstrates that the power curve 
uncertainty varies with wind speed as shown in Figure 
5.   

 

Figure 5: Normalized uncertainty in the power curve to 
normalized wind speed at hub height [30] 

Uncertainty of the power curve production is assumed 
to have a normal distribution (Figure 6) [33]. 

 

Figure 6: Power curve 

Wind rose is an angular diagram which describes the 
frequency of the wind in geographical azimuth 
coverage. Simplified wind rose is depicted at the Figure 
7. This model is used in this study to incorporate 
changes of the wind direction at a site. The wind rose is 
divided in sectors, which contain information of the 
probability of the wind occurrence in each sector 
(direction). Within each sector d the direction of the 

wind    can change at an angle    (        ) with a 
uniform probability distribution. Described stochastic 
model of the wind direction is used for the purpose of 
demonstrating the principle. If actual wind rose variation 
data for a site is available, it can be substituted for the 
crude model presented here, or the variability can be 
simply omitted from the model. 

 

Figure 7: Simplified model of the wind rose, changing of 
the direction. 

The AEP function is modified to stochastic as shown 
below: 
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To handle the stochastic nature of the objective 
function, the number of samples should be large 
enough to give the same optimized value after each run 
or to give values with a certain confidence.  

3.3 Objective function  

The mathematical formulation of the optimization 
problem is as follows, with explanations regarding it 
given below: 

Max    (           )                                                  (  ) 

S. t.             ,                                       (23)   
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where xi, yi, typei are the parameters (coordinates and 
type) of each i wind turbine to be optimized, ri, rj are the 

radii of the neighboring turbines i, j rotors,      is the 
minimal allowed distance between turbines, forbidden 
zone is an area where installation of the wind turbine is 
not possible. 

Firstly, trial locations of the wind turbines should lie 
within borders of the grid eq (23) and eq (24).  

Secondly, two types of constraint are inherent in the 
model. The first one eq (26) defines the minimum 
acceptable distance between turbines. Wind turbine 
located in the wake zone of another turbine experiences 
higher mechanical loads due to high TI intensity in the 
wake zone. This can lead to higher failure frequency in 
wind turbine components. In this study it is assumed 
that each turbine has a round shaped forbidden zone 
around it, which can be equal to two diameters of the 
turbine rotor. Second constraint eq (27) defines 
forbidden zones at the site, where turbines cannot be 
placed, for instance, zones close to buildings or roads. 

3.4 Optimization algorithm 

Differential evolution (DE), a type of evolutionary 
algorithm, was used in the optimization. Evolutionary 
algorithms (EAs) are stochastic population-based global 
optimization algorithms that provide robust convergence 
to a global optimum even if the objective function is 
multimodal, multiconstrained, non-continuous, non-
differentiable or noisy. The cost of the reliability is a far 
greater computational time than what would usually be 
required with mathematical derivative-based 
optimization methods, or even single-point direct 
methods not based on derivatives.  

Optimization by EAs is based on mimicking the natural 
selection process, dealing not with single points in the 
optimization space, but populations of trial solutions 
competing with each other for survival and chance of 
reproducing offspring (new trial solutions) to the 
population of next generation, and applying random 
mutations to ensure diversity of solutions and thorough 
searching through the objective function. The better the 
objective function value of a trial solution, the better its 
chance of passing the selection and surviving to the 
next generation. Genetic algorithms apply selection 
pressure also in the selection of parent solutions for 
recombination to produce new trial solutions. 

Traditional DE is a real-valued optimizer where the 
search relies mainly on mutation and offspring selection 
without parent selection. Discrete variables are dealt by 
a coding scheme where allowable range of real values 
is divided to slots, and any value from one slot 
translates to a single discrete value to be used in the 
objective function evaluation.  

An important characteristic of DE is that the magnitude 
of mutations is adjusted by basing it on a difference 
vector between two randomly chosen vectors r1 and r2. 
This ensures that as the population converges towards 
the optimum and the search proceeds from finding the 
right area to fine-tuning the solution, the mutations 
become gradually smaller.  

In the original DE a new generation of vectors 
(candidate solutions) is produced from old generation 
by having each vector serve once as a target vector, 
and surviving to new generation if it wins the 
comparison with a trial vector u generated by crossover 
between a noise vector v and the target vector itself. 
Decision variable values of u are taken from v at 
probability defined by the tuning parameter CR, 
otherwise from the target vector. The noise vector v is 
created by differential mutation from a base vector x0 
chosen from generation G by adding to it the difference 
vector r1-r2 scaled with an adjustable parameter F. This 
form of DE is known as DE/rand/1/bin for random 
selection of base vector perturbed in differential 
mutation by 1 vector difference followed by binomial 
crossover with target vector. 

In the optimization of wind farm configuration 
considered in this study, each turbine is described with 
three variables, x and y coordinates defining the 
location, and a third variable defining the type, resulting 
in a total of 3nWT decision variables where nWT is the 
maximum number of turbines in the wind farm. The 
objective function is clearly not separable, i.e. the 
‘goodness’ of one variable value cannot be determined 
in isolation but depends on other variables. For such 
problems the differential mutation provides a rotationally 
invariant search easily able to move in multiple variable 
axes simultaneously, which is problematic for 
crossover-reliant GA’s. Rotational dependence is 
introduced by crossover even in DE unless CR=1, but 
arithmetic linear recombination provides means of using 
recombination while avoiding rotational dependence. A 
DE/rand/1/either-or algorithm [38] generates the trial 
vector u by either taking the noise vector v as such, or 
by a recombination from three randomly chosen 
individuals r1, r2 and r3, 

                     u = r1 + K(r2 + r3 – 2 r1),                     (28) 

where K is a tuning parameter for the algorithm. In this 
implementation the crossover parameter CR is replaced 
by probability PF of using differential mutation rather 
than arithmetic recombination. This variant has shown 
good combination of robustness, speed and ease of 
tuning in the optimization of highly multi-modal test 
functions [38], and was used in this study. In order to 
obtain faster convergence, each trial vector is evaluated 
with 5000 Monte Carlo samples. Mean function 
evaluation time took 10-12 second and accuracy of the 
estimation was within 1% with 5000 samples. 

Initial population is generated randomly with uniform 
probability distribution within the allowed range for each 
decision variable. Invalid population members were not 
allowed for the initial population: in case of an invalid 
initial candidate, another random candidate is created 
repeatedly until a valid result is obtained. 

During the run of the algorithm, an invalid candidate 
solution violating any constraints is never allowed to 
replace a valid one, and objective function values are 
thus not calculated for invalid candidates. If a candidate 
violates only boundary constraint(s) (eq (23), (24) and 
(27)) of the type xi,min < xi < xi,max, the algorithm attempts 



to fix the candidate before rejecting it. This is performed 
by reflecting the illegal decision variable value(s) back 
to within boundaries, i.e. if value of variable xi in a trial 

solution is xi,max+xi or xi,min-xi these would be replaced 

by xi,max-xi or xi,min+xi respectively. In the case when 
distance between turbines LT is smaller than the 

minimum allowable distance       (     ) by LT 

=Lmin-LT, the algorithm attempts to fix the member by 
moving one turbine away from the other so that new 
distance will be             ( )   . 

4 Case study 

The case with 10 turbines is considered. Terrain is 
assumed to be flat, as described in chapter 2.3. Turbine 
type could be chosen from four different 3 MW turbines 
differing in hub height and rotor diameter. The cost data 
for the four types were determined by using the cost 
distribution for different turbine components from [30] 
for a  5 MW turbine and an assumed 1200 €/kW 
installed cost for such turbine as a basis, and then 
applying the scaling formulas from [31] to obtain 
component costs for the different 3 MW turbines. The 
resulting turbine costs are listed in Table 1 below. 

 

Table 1: Turbine costs 

 Type 1 Type 2 Type 3 Type 4 

Hub height H,    
m 

100 100 120 120 

Rotor diameter, 
m 

50 60 50 60 

Total turbine 
installation cost, € 

4.5 5.8 4.8 6.2 

 

Costs of O&M is assumed to be 10 € per MWh of 
energy produced over the life time of the wind farm [2]. 

It is assumed that electricity selling price is guaranteed 
with feed-in-tariff over life time of the project [39].  

 

Table 2: Selling price for wind energy produced 

Period of time Price 

      105.3 €/MWh 

           83.5 €/MWh 

            60 €/MWh 

 

Wind speed histogram and wind rose for the site are 
shown at the Figure 8 and Figure 7, respectively. 
Simplified wind rose is used, which is divided on 4 
sectors. Following probabilities of occurrence wind 
speed have been used: North 50%, East 20%, South 
10% and West 10%.  

The project life time is assumed to be 20 years and 
operational time of the wind park is 90% of a year. An 
interest rate of 5% is used. 

  

Figure 8: Wind histogram 

5 Results 

Convergence history of the 10 turbine case with 
population size NP=300 as presented in Figure 9 
below. Solid line represent the change of best and 
dotted lines the change of mean objective function 
value in the population. Parameters of PF=0.6 and 
F=0.7 are used. The tuning parameter K in eq (28) was 
estimated from K=0.5(F+1.0) on the basis of 
recommendation in [38]. 

 

 

Figure 9: Convergence history 

Solid line represent the change of best and dotted lines 
the change of mean objective function value in the 
population. 

In the initial entirely random population the mean 
objective function value was 8.864 M€. From Figure 9 it 
can be seen that the population quickly and significantly 
improved from this value, but the rate of increase of the 
objective function value then rapidly slowed down. After 
2.5∙10

5
 objective function evaluations, it is clear that the 

population is not yet fully converged to an optimal 
value. Further improvements that would be significant 
considering the uncertainties involved would appear 
unlikely, however. 

The best solution obtained is demonstrated in Figure 10 
below.  

 



 

Figure 10: Optimized wind farm design after 2.5∙10
5
 

With green and blue colors are shown the turbines of 
type 1 and type 2, respectively. 

 

Figure 11: Probability distribution function of optimized 
wind farm 

 

Figure 12: Cumulative provability density function of 
optimized wind farm  

Figure 11 demonstrates probability distribution function 
(pdf) of an optimized wind farm. Throughout the 
optimization, the pdf of different wind farm layouts do 
not change significantly. It can be concluded that the 

distribution depends strongly on the wind distribution of 
the wind farm, which in this paper is assumed 
homogeneous. In Figure 12 is depicted the cumulative 
probability density function of optimized wind farm, 
where black and red line show mean and 75% of 
certainty level value of the objective function, 
respectively. 

6 Conclusions 

A method for considering uncertainties and minimizing 
risks in wind farm projects is presented in this study. 
Optimization is performed to maximize the minimum 
profit expected at 75%  of certainty level, with Monte 
Carlo sampling used to obtain the performance of a 
candidate solution, and by differential evolution used as 
the optimization algorithm. 

Due to the large number of Monte Carlo simulations 
required to obtain the objective function value of each 
candidate the optimization process is computationally 
considerably more demanding than what it would be if 
the objective was to maximize simply the expected 
profitability. This problem is further exacerbated by the 
large number of objective function evaluations required 
by DE to find the optimum. While the calculation time 
could be reduced by first estimating the objective 
function value with a smaller number of samples, some 
of this advantage is probably lost through the noise that 
this method adds. 

The either-or DE strategy used here appears to be able 
to find an optimum solution, but the process is very slow 
and there are considerable difficulties in creating 
feasible individuals. Modifying the algorithm to be able 
to fix illegal candidate solutions proved to be vital for 
obtaining useful improvement rate, and even then full 
convergence to a single point could not be achieved in 
a reasonable amount of objective function evaluations. 

In future work an attempt should be made to improve 
the convergence performance. The most obvious step 
is to investigate the sensitivity of the algorithm to the 
tuning parameters. Although DE and specifically the 
either-or strategy was presumed to be a suitable 
optimization method, other strategies of DE and other 
metaheuristics could provide better performance. A 
different coding scheme than using Cartesian 
coordinates of each turbine directly as decision 
variables could also yield improvements, as well as 
improved ways of fixing infeasible solutions.  

In final conclusion, the DE implementation presented in 
this paper appears to be able to optimize the wind farm 
configuration, but only after a considerable amount of 
computation time. Clearly in future work effort should be 
made to improve the performance of the optimization 
algorithm. 
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