
 - 1 -

CLEEN OY Eteläranta 10, P.O. BOX 10, FI-00131 HELSINKI, FINLAND www.cleen.fi

OPENDSS MODEL OF ORIVESI MV-
GRID, DOCUMENTATION

Table of Contents
Introduction ... 2

Original network data .. 3

Conductor type data ... 3

Feeder data ... 4

Composing the model .. 4

Bus list ... 5

Bus naming conventions .. 6

Lines .. 7

Transformers .. 8

Loads and time series .. 9

Finalizing the model (master script file) .. 10

Using the model with MATLAB through COM-interface .. 12

Preparations ... 12

Running standard (OpenDSS native) simulations ... 12

Example ... 13

Modifying time series .. 15

Reading simulation data .. 15

Appendixes .. 16

A: An example of line and busbar data ... 16

B: An example of transformer data ... 17

C: Modelling Yzn11 transformer in OpenDSS ... 18

The list of required files: ... 20

 - 2 -

CLEEN OY Eteläranta 10, P.O. BOX 10, FI-00131 HELSINKI, FINLAND www.cleen.fi

Introduction
Model was created for yearly power flow calculation so that user would be able to define time series for
transformer loads and then simulate grid voltages for predetermined time period. However the model can be
modified for other types of analyses by user relatively easy. For example by specifying harmonic spectrums
for transformer loads user could run harmonic sweep analysis or by attaching an EnergyMeter object into the
model user could run a simulation for yearly grid energy losses.

Model is, in essence, a collection of dss-script files each representing an individual part of the model. The
composition and general relations of the script files are depicted in figure 1.

Orivesi_main.dss

This is the main model
script.

All other script files are
included into the model
from this file.

This file also includes
definitions for main
transformers and
transmission grid
connecting point.

linecode.dss

This file includes definitions for LineCode objects which are
used to define actual lines in the model

Lines.dss

Individual lines and line connections for the model are
defined here.

Transformers.dss

Distribution transformers for the model are define in this
file. Every transformer has a data recording element (ie.
Monitor) connected to its primary side which is also
defined here.

LoadsV.dss

This file includes definitions for transformer loads and
LoadShape objects for loads in question

LineCode .csv-files

The load time series are defined in separate csv files. Each
LoadShape has a .csv file of its own. There are roughly 450
separate files.

Figure 1: Composition of the model

After reading this documentation reader should be able to run yearly power flow simulations from MATLAB
using this model.

 - 3 -

CLEEN OY Eteläranta 10, P.O. BOX 10, FI-00131 HELSINKI, FINLAND www.cleen.fi

Original network data

Network model is composed from data supplied by Elenia Oy, which was modified to format OpenDSS
understands. Data was delivered in excel tables each representing the mv-grid behind an individual
substation feeder. In this chapter the method for interpretation of network data is described.

Conductor type data
Data regarding conductor types was in an individual excel table. In this model this data is used to define
LineCode objects. These objects are used in OpenDSS to define per length unit characteristics of any line
configuration. For every conductor type a separate LineCode object is defined. LineCodes are written to file
“linecode.dss” which is included to the model from the master script file. Separate LineCodes are called
when the lines for the model are defined.

In the following example the method for creating a LineCode object is demonstrated.

Example:

Overhead line with aluminium conductors has following characteristics:

Tunnus Johtolaji R X R0 X0 RN XN BN BL IMAX IKMAX

A54
A54 3x54
Al 0.537 0.391 0 0 0 0 1.916 2.93 280 4.7

“Tunnus” is used as name for LineCode object. R and X are series resistance and inductive reactance per
kilometre, respectively. BN and BL are shunt and line-to-line susceptances (µS/km). IMAX is maximum
loading current (A) and IKMAX is maximum short circuit current (kA).

For LineCode object resistance and reactance values are used directly. Susceptance values however must be
converted into per length capacitance values (nF/km). This can be done by applying following equation:

nF
km

= 1000
S

km = 1000
S

km
2 50 Hz

In linecode.dss file this conductor type would be defined in the following way:

new LineCode.A54 units=km R1=0.537000 X1=0.391000 R0=0.537000
~ X0=0.391000
~ Cmatrix="6.098817 | 9.326480 6.098817 | 9.326480 9.326480
~ 6.098817"
~ Emergamps=280

 - 4 -

CLEEN OY Eteläranta 10, P.O. BOX 10, FI-00131 HELSINKI, FINLAND www.cleen.fi

Feeder data
The actual network data for line connections and distribution transformers is divided for each system feeder.
The data consists of definitions for transformer stations and individual transformers, lines and transformer
station busbars, MV-isolators and feeder root connection point (i.e. Main transformer bus). Network
connections are specified by using xy-coordinates. For lines coordinates for both beginning and the ending
points of the line are specified.

Lines and busbars

Line and busbar data is used to define both bus connections and Line objects in the model. Bus connections
are discussed further, here we focus on line data.

As discussed is previous chapter line objects are defined by using conductor data and line length, these are
define in line data table in fields “Tunnus” and “Pituus” respectively. See appendix A for examples of line
and busbar data.

Distribution transformers

Distribution transformer data is defined in two tables: distribution transformer table which has VA and
impedance values for individual transformers and transformer station table which has a name and id for the
transformer.

In the distribution transformer table values of interest for transformer are nominal VA, load losses, no-load
losses, nominal primary and secondary voltages, vector group and short-circuit impedance. These values are
found in fields “Mitoitusteho”, “Kuormitushäviöt”, “Tyhjäkäyntihäviöt”, “Ensiöpuloen mitoitusjännite”,
“Toisiopuolen mitoitusjännite”, “Kytkentäryhmä” and “Oikosulkuimpedanssi” respectively. See Appendix B
for an example in transformer data.

Main transformers

There are two main substation transformers which are defined separately in original network data. For
substation transformers a bit more data is provided than for regular distribution transformer, namely
minimum and maximum series resistance and short-circuit impedance values. For this model average
impedance values are used. OpenDSS doesn’t differentiate substation transformers from distribution
transformers. Therefore all transformers, including substation and distribution transformers, are modelled as
Transformer objects.

Main transformer table also includes values for network impedances behind substation at transmission
network side. These values are used to define Thévenin equivalent source feeding the model.

Composing the model
Composing the model from the network data introduced above is a fairly straightforward process. The lines
in the network are modelled with Line objects and transformers with Transformer objects, both of which are

 - 5 -

CLEEN OY Eteläranta 10, P.O. BOX 10, FI-00131 HELSINKI, FINLAND www.cleen.fi

built in representations of lines and transformers in OpenDSS. Loads are connected directly to distribution
transformers’ secondaries and they are modelled with Load objects.

For purposes of clarity not every object is defined in a single script file. As show in chapter Introduction the
complete model is composed of multiple .dss-files each containing definitions for different types of objects.

The most troublesome part of the modelling was the representation on connections in the original network
data versus connection representation in OpenDSS. These are discussed in chapters to come.

Bus list
The need for a bus list arose from the way of connection representation in original network data vs. network
connections in OpenDSS. As said before original network data specified connections using xy-coordinate
system. This meant that if an arbitrary line A begun from coordinates (x1,y1) and ended in coordinates
(x2,y2), and another arbitrary line B begun from coordinates (x2,y2) and ended in coordinates (x3,y3) these
lines were considered to be connected so that the beginning on line B was connected to the end of line A.
However in OpenDSS the connection points are specified by using bus names instead of coordinates.

This problem was solved by generating a bus list which bound an individual coordinate to an integer. This
integer was then used in bus name, for example “Bus_34”. Now, a certain coordinate connection could be
expressed as a simple string. The syntax of the bus list is following:

X-coordinate1 Y-coordinate1 Integer1

 …

X-coordinaten Y-coordinaten Integerm

Note that n m because multiple coordinates may refer to same connection point.

The generation of bus list begun from listing the busbar coordinates. If two coordinates were connected
together via busbar they were considered to be same connection point (ie. bound to same integer). Essentially
this meant that connections made with busbars were reduced from the model and objects connected with
busbars were just simply connected directly together. This is illustrated in figure x.

 - 6 -

CLEEN OY Eteläranta 10, P.O. BOX 10, FI-00131 HELSINKI, FINLAND www.cleen.fi

Figure 2: Busbar reduction

After busbar coordinates were added to the list, the line coordinates were added. If a line was connected to a
busbar the coordinate already existed in the list and there was no need to add it again. Also if line didn’t
connect to a busbar, but connected to some other coordinate already in the list, the coordinate was not added.
On the other hand if the line didn’t connect to a busbar and did not connect to any existing coordinate the
coordinate was added with a new integer reference.

Finally, when the list was completed we could use the coordinate-integer relations in defining the actual
network objects.

Bus naming conventions
The before mentioned bus list is created separately for every feeder. If just integer values were to be used in
bus naming, it could (and most probably would) result in unwanted interconnections between feeders. This is
avoided in the model by using bus name which consists of the feeder name and the reference integer. For
example, let’s consider naming the bus for coordinate in “Teollisuus” feeder which reference integer is 10.
The bus name in the model would be “kj_bus_teollisuus10”. In general the bus name can be divided into 3
parts. First, the prefix “kj_bus_” is used when the bus in question is a MV bus. “teollisuus” refers to the
feeder the bus is associated and last “10” is the reference integer obtained from the bus list. So in general the
MV-side bus name syntax is “kj_bus_’feeder name’’reference integer’”.

 - 7 -

CLEEN OY Eteläranta 10, P.O. BOX 10, FI-00131 HELSINKI, FINLAND www.cleen.fi

The bus naming system introduced above is used when bus in question is associated with MV-side of the
model. Generally most of the buses in the model are named using this system. Currently only exceptions to
this convention are distribution transformer secondary buses. With these buses following bus name syntax is
used: “scd_’transformer station id’”. For example the secondary bus of the example transformer in appendix
B is named “scd_101570”.

Lines
The power lines are represented with Line objects in OpenDSS model. These objects are defined simply by
stating line length, conductor type and bus connections. For example the line in appendix A is defined in
OpenDSS script followingly:

new Line.1290115 units=m Linecode=Pg99 bus1=kj_bus_teollisuus214
~ bus2=kj_bus_teollisuus2 length=546.126787

Few notes from this definition are in order. Firstly, the bus names are obtained by searching the bus list for
reference integer for both end point and beginning point coordinates. Then the bus name is constructed as
instructed in previous chapters. Secondly, LineCode units for per length values were defined as per kilometre
and here we use meter as line length. This is no problem as OpenDSS converts the units internally as long as
they are explicitly defined for both objects.

For the model a file lines.dss is created. In this file every line in the model is defined.

The modelled network is partly built meshed for purposes of secondary feeding if some part of network
would fail. Normally network would operate radially. This causes a problem in the model because under
normal connection conditions there would be open isolators in meshed parts to prevent meshed operation.
This however is not the case with the model which assumes that all defined lines would be connected from
both ends. In order to make model correct the open isolators must be somehow added to the model.

One possibility to model open isolators in OpenDSS is to define extremely low impedance lines to the places
in model where an isolator should be and then define the line in question disabled. These lines would then
effectively serve as switches in the model. There is however a problem in this solution. OpenDSS converts
impedance models to admittances to calculate power flow. For near-zero impedance this would mean near-
infinite admittance which could cause computational errors. Therefore this is not implemented.

As the number of normally open isolators is low, it was decided that the most practical way in dealing with
this problem was to open the isolators manually in the lines.dss file. This was done by declaring those line
terminals open where an open isolator should be.

In test simulations it became apparent that some parts of the network were left unconnected to the rest of the
model. This was due to errors in original network data (most likely missing busbars) and it was corrected by
manually entering correct bus definitions to lines.dss file.

 - 8 -

CLEEN OY Eteläranta 10, P.O. BOX 10, FI-00131 HELSINKI, FINLAND www.cleen.fi

Transformers
All transformers including substation and distribution transformers are represented with Transformer objects
in OpenDSS. The Transformer object definition is bit more complex than Line object’s. Generally one would
specify transformer by entering phase count, number of windings, vector group, bus connections, nominal
winding VA’s and primary and secondary voltages. Also, to correctly model transformer voltage loss and
real power losses, one must enter short-circuit reactance between primary and secondary windings and per
cent values for load and no-load losses.

For example the transformer described in appendix B would be defined in transformer.dss file followingly:

new Transformer.Siltaoja Phases=3 Windings=2 kVs=[20.000000
~ 0.400000] XHL=3.998321 kVAs=[315.000000 315.000000]
~ %Loadloss=1.158730 %Noloadloss=0.193651 conns=[Delta Wye]
~ buses=[kj_bus_teollisuus2 scd_101570]

Values for kVs and kVAs arrays are taken directly from original network data. XHL, %Loadloss and
%Noloadloss must be calculated. XHL, the per unit short-circuit reactance from high voltage side winding to
low voltage side winding can be calculated from short-circuit impedance, :

= +

=

=

 And %Loadloss and %Noloadloss followingly:

%Loadloss = 100

%Noloadloss = 100

Transformer vector groups are modelled in OpenDSS by specifying transformer winding connections
accordingly. For example the transformer above connection Delta-Wye would result in vector group Dyn11
as given in original network data. By specifying bus connections “buses=[kj_bus_teollisuus2
scd_101570.2.3.1.0]” user could create vector group Dyn9. Similarly all vector groups with either star on
delta connected windings can be modelled.

In original network data there are three different vector groups for distribution transformers: Dyn11, ZNzn0
and Yzn11. Modelling Dyn11 vector group is easy as shown before, as for the other two groups modelling is
not that simple. OpenDSS lacks internal winding definition for Z-connected (Zigzag, Interconnected star)

 - 9 -

CLEEN OY Eteläranta 10, P.O. BOX 10, FI-00131 HELSINKI, FINLAND www.cleen.fi

windings. This may be due to the fact that Z-connected transformers are nearly non-excitant in US
distribution networks. The only way to model these transformers is to use three single phase, 3 or 4-winding
transformer models which are then interconnected accordingly. Modelling an Yzn11 connected transformer
is explored in appendix C.

For each transformer a voltage recording element is also defined. In OpenDSS Monitor elements are used to
record data during multistep simulations. Monitors record a sample per step of wanted quantity, in this case
voltage magnitude, from the circuit element terminal they are attached. For the example transformer above a
following Monitor element is defined:

New Monitor.mon_Siltaoja element=Transformer.Siltaoja terminal=1 mode=32

The parameter terminal=1 refers to transformers high voltage side connection terminal and mode=32 refers
to operation mode for the monitor. In this case operation mode is to record voltage and current magnitudes
for each phase (see OpenDSS Reference Guide, page 143, for other operation modes). Accessing the post-
simulation data recorded by the Monitor is discussed in chapter “Reading simulation data”.

Loads and time series
For this model network loads are connected directly to distribution transformers’ secondary circuits. Loads
are modelled whit Load and LoadShape objects, first of which represents the actual load and second of
which represents variance in load during time. All loads are assumed symmetrical, grounded star connected
with unity power factor.

All Loads and LoadShapes are defined in loadsV.dss-file. Because of the way OpenDSS handles linking
these objects LoadShape for a certain load must be defined before the actual Load object.

For example a load for the transformer discussed in previous chapter would be defined followingly. First we
define the LoadShape:

new LoadShape.LS_V_101570 npts=8784 csvfile=".\LS_V_101570.csv"
~ useActual=Yes

Name of the defined LoadShape is the transformer station id (also used in LV-side bus naming) with
“LS_V_” prefix. The parameter npts refers to a number of elements in the time series and the parameter
csvfile refers to the file in which the actual loading values are. Lastly, useActual=Yes mean that OpenDSS
uses the values in the .csv file as actual values for the load, not as multipliers for base load value as it would
normally do.

Then we define the actual load:

new Load.Load_101570 Phases=3 kv=0.4 kw=0 pf=1 conn=wye
~ bus=scd_101570.1.2.3.0 Yearly=LS_V_101570

 - 10 -

CLEEN OY Eteläranta 10, P.O. BOX 10, FI-00131 HELSINKI, FINLAND www.cleen.fi

With declaration “Yearly=LS_V_101570” the defined load uses the predefined LoadShape’s power values
for yearly simulation studies.

The Loads and LoadShapes in file loadsV.dss are composed from AMR measurement data collected from
customers of Orivesi MV-grid from time period from November 2011 to October 2012. From this measured
data the .csv files for each load are calculated by summing the loads of every customer behind a certain
transformer station.

If for some reason this model is to be distributed without the measured loadings another file for load
definitions is also created: blank_loads.dss. In this file Load and LoadShape objects are defined similarly but
with zero load values for every hour. In order to run simulations using this load file user must define these
values. See chapter “Modifying time series” how to insert load values for LoadShape objects from
MATLAB.

Finalizing the model (master script file)
In order to make the model complete a master script file must be created. In this file Thevenin source feeding
the system and main substation transformers are defined, and after that rest of the model files are included
and compiled into the program.

The master script file is relatively short compared to rest of the model script files. It only has c. 30 lines
whereas rest of the files have between 1000 and 3000 lines. The master script file is depicted in figure 3.

 - 11 -

CLEEN OY Eteläranta 10, P.O. BOX 10, FI-00131 HELSINKI, FINLAND www.cleen.fi

Figure 3: Master script file

The master script begins with “clear” command. This clears the program from any previous circuit
definitions and it is considered to be good practice to begin every master script file with this command. After
clearing a new circuit is defined. Defining new circuit automatically results in definition of system feeding
voltage source “Source”. This source is intended to represent distribution networks connection point to
transmission network. In order to accurately represent the feeding transmission network voltage and series
impedance values for the source must be defined. Here it’s assumed that voltage of the feeding system is
constant at its nominal value 110 kV.

In the next section main substation transformers are defined. Parameter values for definition are calculated
similarly as in distribution transformer definition. Here it is assumed that substation transformers do not have
tap changers and they operate at their nominal voltage ratios. Also, two monitor are defined which record
voltage magnitudes of transformers’ secondary circuits.

After transformer and monitor definitions rest of the network model (lines and transformers) is included and
compiled to the program. After this the transformer loads are included. If the user wishes, this file can be
changed to “blank_loads.dss”. Here it’s assumed that rest of the script files are in the same directory as the
master script file.

 - 12 -

CLEEN OY Eteläranta 10, P.O. BOX 10, FI-00131 HELSINKI, FINLAND www.cleen.fi

In the last section maximum iterations per solution are defined. Here the number of allowed iteration is 50.
The value is relatively high, normally being around 15. This is because it would seem that circuits containing
Zigzag transformers are sometimes particularly difficult to solve. This however has no significant effect on
simulation time as OpenDSS only does as many iterations as required. Normally solution converged in 3-4
iterations during test simulations. After defining maximum iterations base voltages for the model are defined.
After the allowed voltage bases are defined calcvoltagebases-command is issued. This invokes a zero-power
flow solution in the circuit which OpenDSS uses to define base voltage for every element.

Using the model with MATLAB through COM-interface

Preparations
When using OpenDSS user may choose whether to run simulations using the OpenDSS executable or using
OpenDSS simulation engine from 3rd party software (for example MATLAB or Excel) through COM-
interface. If the system which is simulated is simple the executable is adequate in most cases. However when
simulating complex systems with multiple recording elements (like in this system), it is only reasonable to
use OpenDSS simulation engine from the software one would use for the result processing. In this chapter
using OpenDSS simulation engine from MATLAB is discussed.

In order to use OpenDSS simulation engine the OpenDSS software must be first installed. Currently there are
two distributions of the software: standalone executable and installer pack. If the installer pack is used no
other preparations in addition to running the installer are required. And if the standalone executable is used
the OpenDSS engine must be registered. There are comprehensive documentations on OpenDSS wiki site for
the registration (http://sourceforge.net/apps/mediawiki/electricdss/?source=navbar). For most systems
registration can be done in a following way:

1. Run the command prompt (as administrator in windows XP, Vista and 7) and go to the directory you
have the OpenDSS’s .dll files.

2. Run command: regsvr32 OpenDSSEngine.DLL

After this the OpenDSS simulation engine is ready to be used from other softwares.

Running standard (OpenDSS native) simulations
In order to run simulations from MATLAB an instance of OpenDSS engine must be created, then the
simulation engine must be started and lastly the model must be compiled. After this user may use the
OpenDSS command interface to issue simulation commands pretty much like one would use the
executable’s interface. In MATLAB the creation of the engine instance is done by commanding

DSSObj = actxserver('OpenDSSEngine.DSS');

And the engine is started by invoking the starting method:

DSSStart = DSSObj.Start(0);

http://sourceforge.net/apps/mediawiki/electricdss/?source=navbar

 - 13 -

CLEEN OY Eteläranta 10, P.O. BOX 10, FI-00131 HELSINKI, FINLAND www.cleen.fi

This method should return an integer 1. If not then for some reason the simulation engine failed to start.
Now, in order to issue commands to OpenDSS engine an interface for text command must be created. This is
done by commanding:

DSSText = DSSObj.Text;

This interface has two properties Command and Result. The Command property is used to issue the text
commands and the Result property is used in reading the results of some commands (for example after
issuing an export command the exported filename will appear in the Result property). Next step is to compile
the model. This is done by compiling the master file which should if properly created contain compilation
commands for the rest of the model. From MATLAB commands is issued followingly:

DSSText.Command = ...
 'compile U:\orivesi_documentation\modelfiles\Orivesi_main.dss';

Now, here it’s important to specify the full file path of the master script file otherwise the command may not
have the wanted result.

Now finally the simulation engine is ready to take simulation commands. In the following chapter running a
yearly power simulation is explored.

Example
We have now run the basic steps to enable simulation running. Let’s consider that we have compiled the
model with loadsV.dss file so that we have some meaningful values for transformer loads. We would now
like to run a yearly power flow simulation so that we would have transformer station voltage magnitudes for
every hour. As the model and the loading conditions are symmetrical we are only interested in the voltage
magnitudes of the first phase in the system (we will assume that voltage magnitudes for other phases are
same). The MATLAB code for running this simulation is depicted in the figure 4.

 - 14 -

CLEEN OY Eteläranta 10, P.O. BOX 10, FI-00131 HELSINKI, FINLAND www.cleen.fi

Figure 4: MATLAB code for yearly power flow simulation.

The initializing steps described in previous chapter are taken on line 1 to 12. On lines 13 to 16 Simulation
parameters are set (multistep yearly simulation, 8748 simulation steps with default step length of one hour,
beginning from hour 0) and solve command is issued.

After the simulation is done an interface to recording elements (Monitors) is issued and matrixes for results
are initialized. Then the data recorded by the monitor is read from the monitor bytestream and the monitor
name is inserted into the name matrix. From the data recorded by the monitor the matrix column representing
line-to-neutral voltage of the first phase is selected, all of its values multiplied by (3)/1000 (in order to

 - 15 -

CLEEN OY Eteläranta 10, P.O. BOX 10, FI-00131 HELSINKI, FINLAND www.cleen.fi

represent line to line voltages in kV), and the resulting vector is inserted to the voltage matrix. This is done
to all monitors in the circuit.

At the end of the simulation we have to two matrixes containing result values: “Voltages” and
“Mon_names”. “Voltages” is number_of_hours by number_of_monitors matrix which contains the line-to-
line voltage values for every transformer station at every hour in the simulation. “Mon_names” contains the
monitor names in single row. They bind the column in the Voltage matrix to a certain monitor name.

Modifying time series
In order to run different simulations user has to be able to modify the power values in the time series for
loads. For this purpose a MATLAB function ModifyLoadShapeArray was written, and it is to be supplied
with the model script files. The syntax of the function is:

function return_bool = ModifyLoadShapeArray(DSSObj ,
Array_of_Powers, LSname)

In which, the parameters are:

- DSSObj, the interface to the OpenDSS engine.

- Array_of_Powers, n by 1 array of real powers for the load time series.

- LSname, the name of the LoadShape object the time series is to be inserted.

The function returns logical true if the LoadShape with the given name was found, else logical false.

It’s important that the user specifies correct sized power array. For example, if user wishes to run simulation
for 1000 hours the user must specify 1 by 1000 array for every LoadShape in the model and then specify the
number of solutions in the simulation parameters to be 1000. If for some reason user specifies this number of
simulations to be something else, like 2000 then OpenDSS would start to repeat the time series after the first
1000 solutions.

In order to modify the power factor of a load user must issue an Edit command trough DSSText interface.
For example, the command:

DSSText.Command = ‘Edit Load.Load_101570 pf=.9’

would edit the power factor of ‘Siltaoja’ transformer’s load to be 0.9.

Reading simulation data
In order to efficiently read the data recorded by the monitors a MATLAB function lueMonitoridata was
written. This function is also to be supplied with script files. The syntax for function is following:

function output = lueMonitoridata(bytestream)

 - 16 -

CLEEN OY Eteläranta 10, P.O. BOX 10, FI-00131 HELSINKI, FINLAND www.cleen.fi

In which, the parameter is a bytestream from Monitors interface.

The function returns an output structure which contains following fields:

- output.signature, signature byte for the monitor (must be 43756)

- output.version, program version

- output.recsize, number of recorded quantities

- output.mode, operation mode of the monitor

- output.header, string containing names for recorded values

- output.data, a matrix containing the values recorded by the monitor in same syntax as in exported
.csv file

See the example simulation in the Example chapter for proper use for this function.

Appendixes

A: An example of line and busbar data

Table 1: A single line on line data table.

ID Laji x1 y1 x2 y2 Pituus
(m)

Kytkime
n tila 1

Kytkime
n tila 2

Tunnu
s

1290
115

Pg99 3x85/14
Al/FE Pigeon

684255
1.105

25180
85.41

684298
3.598

251821
6.281

546.126
7865

0 0 Pg99

 - 17 -

CLEEN OY Eteläranta 10, P.O. BOX 10, FI-00131 HELSINKI, FINLAND www.cleen.fi

Table 2: A single line on busbar data table.

ID Laji x1 y1 x2 y2 Pituu
s (m)

Kytki
men
tila 1

Kytki
men
tila 2

Tunnus

1319
847

MMO-kisko-osa
näkymätön SJ

6842
983

2518
216

6842
983

2518
216

0.031
25

0 0 MMO-kisko-osa

B: An example of transformer data

Table 3: A single line on distribution transformer data table

ID Laji Fat
her
ID

x y Mitoit
usteh
o
(kVA
)

Kytken
täryhm
ä

Kuormi
tushävi
öt (W)

Ensiöp
uolen
mitoitu
sjännit
e (V)

Tyhjäkä
yntihävi
öt P0
(W)

Toisio
puolen
mitoitu
sjännit
e (V)

Oikosulku
impedanss
i (%)

131
984

9

Jakelu
muunt
aja

131
983

8

684
298

3

251
821

6 315 Dyn11 3650 20000 610 400 4

Table 4: A single line on transformer station data table

Note: the value in the FatherID field binds an individual distribution transformer to transformer station

ID Laji x y Tunnus Nimi

1319838 2-
pylväsmuuntamo

6842984 2518216 101570 Siltaoja

 - 18 -

CLEEN OY Eteläranta 10, P.O. BOX 10, FI-00131 HELSINKI, FINLAND www.cleen.fi

C: Modelling Yzn11 transformer in OpenDSS
Let’s consider an Yzn11 transformer with following nameplate values:

U1/U2 20/.4kV

SN 100 kVA

PLoadloss 2.51 kW

PNoloadloss 269 W

zK 6 %

Winding configuration and phasor group for this transformer would be as shown in figure 5:

Figure 5: Phasor group and winding connections of Yzn11-transformer

As OpenDSS doesn’t have internal model for Z-winding configuration we must use interconnected single-
phase transformers for modelling. The winding configurations for these transformers is depicted in figure 6.

 - 19 -

CLEEN OY Eteläranta 10, P.O. BOX 10, FI-00131 HELSINKI, FINLAND www.cleen.fi

Figure 6: Winding configuration for Yzn11 transformer.

And in script this would look:

new Transformer.T_p1 Phases=1 Windings=3 kVs=[11.547005 0.133333 0.133333]
~ kVAs=[33.333333 16.666667 16.666667] XHL=5.994748 XHT=5.994748 XHT=5.994748
~ %Noloadloss=0.269000 %Rs=[1.255000 1.255000 1.255000]
~ wdg=1 bus=prim_bus.1.4 wdg=2 bus=scd_bus.1.5 wdg=3 bus=scd_bus.0.4
new Transformer.T_p2 Like=T_p1
new Transformer.T_p3 Like=T_p1
Edit Transformer.T_p2 wdg=1 bus=prim_bus.2.4 wdg=2 bus=scd_bus.2.6 wdg=3

 - 20 -

CLEEN OY Eteläranta 10, P.O. BOX 10, FI-00131 HELSINKI, FINLAND www.cleen.fi

~ bus=scd_bus.0.5
Edit Transformer.T_p3 wdg=1 bus=prim_bus.3.4 wdg=2 bus=scd_bus.3.4 wdg=3
~ bus=scd_bus.0.6
New Monitor.mon_T element=Transformer.T_p1 terminal=1 mode=32

The parameters values are calculated similarly as in chapter “Composing the model \ Transformers” but here
1-phase powers and line to neutral voltages are used. The three transformers are declared to ha same
parameter values and then the winding connections are specified to be as in figure 6.

The list of required files:
Orivesi_main.dss Main model script

lines.dss Line definitions

loadsV.dss Load definitions, from measurement data

blank_loads.dss Load definitions, zero loading

transformers.dss Transformer definitions

linecode.dss Conductor type definitions

modifyLoadShapeArray.m MATLAB function for load time series
modification

lueMonitoridata.m MATLAB function for monitor bytestream
reading

	Introduction
	Original network data
	Conductor type data
	Feeder data

	Composing the model
	Bus list
	Bus naming conventions
	Lines
	Transformers
	Loads and time series
	Finalizing the model (master script file)

	Using the model with MATLAB through COM-interface
	Preparations
	Running standard (OpenDSS native) simulations
	Example
	Modifying time series
	Reading simulation data

	Appendixes
	A: An example of line and busbar data
	B: An example of transformer data
	C: Modelling Yzn11 transformer in OpenDSS
	The list of required files:

