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Abstract. Knowledge engineering and automated sensor data process-
ing and analysis are of key importance to smart grids. First, smart grids
present a conceptual domain. Concepts, relations among them, and in-
stances can be formalized both for knowledge about a grid, such as its
elements and structure, and for knowledge sensed by its smart compo-
nents, such as the optimal time to recharge a vehicle. Second, smart grids
present a domain that is rich in sensors and sensor data. The multitude
of sensors generate a large amount of heterogeneous data. In this paper
I discuss a system that has both knowledge engineering and sensor data
processing and analysis as its core aims. More specifically, the system
aims at automated, near real-time, acquisition of situational knowledge
from heterogeneous sensor data and its automated and formal represen-
tation in ontology. We present the overall architecture of the system and
discuss the materials and methods that are necessary for its functioning
in details. To showcase the application of the system we draw two do-
main use cases and discuss how each may benefit from the application
of the presented system.
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1 Introduction

In the past decade, sensor measurement has seen considerable advancement in
low-cost, low-power, small-size, wireless technology as well as communication
protocols, algorithms, and programming models [1, 7, 47, 51]. Similarly, sensor
data management, processing, and query has received attention with the de-
velopment of database systems optimized for streamed data [9, 8, 27, 28, 18, 11].
In addition, semantic technologies have been adopted for the semantic descrip-
tion of sensors, sensor networks, and sensor data [40, 13, 2, 15, 26, 35]. However,
despite these advancements, managing, processing, and making sense of sensor
data is an ongoing challenge [5, 21, 48, 4].

In this paper, I focus on the challenge of “making sense” of sensor data,
specifically for the domain of smart grids. The concept of SmartGrids was de-
veloped in 2006 by the European Technology Platform (ETP) for Smart Grids.1

1 http://www.smartgrids.eu/web/node/81
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According to the SmartGrids ETP, a smart grid concerns “an electricity net-
work that can intelligently integrate the actions of all users connected to it –
generators, consumers and those that do both – in order to efficiently deliver
sustainable, economic and secure electricity supplies.” To do so, “a smart grid
employs innovative products and services together with intelligent monitoring,
control, communication, and self-healing technologies in order to: (1) Better fa-
cilitate the connection and operation of generators of all sizes and technologies;
(2) Allow consumers to play a part in optimising the operation of the system;
(3) Provide consumers with greater information and options for choice of sup-
ply; (4) Significantly reduce the environmental impact of the whole electricity
supply system; (5) Maintain or even improve the existing high levels of system
reliability, quality and security of supply; (6) Maintain and improve the existing
services efficiently; (7) Foster market integration towards an European integrated
market.”

Sensors will be of great importance to smart grids [24]. Indeed, due to the
large amount of sensor data, the domain is such that the data has to be processed
in a continuous manner, ideally in near real-time. The aim of such processing
is the “detection/estimation of some events of interest” [24]. I will present and
discuss a system that supports the real-time representation of situational knowl-
edge, in particular events of interest, in smart grids. The challenge of such a
system is determined by the considerable gap that exists between low-level sen-
sor measurement data and high-level conceptual terminology humans employ to
describe such events of interest. The presented system aims at reducing this gap.
Hence, it has the potential to contribute, at least, towards the points 2 and 3
in the above-listed aims, given that consumers require information in high-level
domain terminology.

A main component of the presented system are semantic technologies, in
particular ontology (knowledge base). An ontology, defined as an explicit spec-
ification of a conceptualization [19], allows for formal representation of domain
knowledge, meaning the concepts of some area of interest and relations that hold
among them. As such, ontologies seem to be ideal technologies to represent do-
main knowledge acquired from sensor data. Using ontology, the semantics of do-
main terminology is formally and explicitly represented outside any one system,
and its particular implementation. Thus, such terminology becomes reusable and
the interoperability of heterogeneous systems that commit to ontologies is im-
proved [33, 49]. For instance, according to [30] “one of the problems common
to the management of central control facilities is the fact that any equipment
changes to a substation or power plant must be described and entered manually
into the central computer system’s database.” Self-describing equipment, where
the description is in the form of metadata that uses domain terminology de-
fined in ontology, could significantly simplify the automatic registration of such
heterogeneous systems, and increase the interoperability among its parts.

The presented architecture also tackles the problem of “too much data and
not enough knowledge,” [40] specifically for the domain of smart grids. Given the
number of sensing devices that are expected in a smart grid, the data such a grid
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generates is expected to be massive. We, thus, may likely run into a situation of
“too much data” and yet the data may provide little explicit knowledge, in an
automated manner. We underscore the importance of automation of both knowl-
edge acquisition and representation because the scale of the data severely limits
manual knowledge acquisition and because of the requirement that knowledge
should be available in near real-time. The presented system aims at abstraction
from sensor data to provide more near real-time situational knowledge that is
automatically acquired and represented, for the domain of smart grids.

Fig. 1. System architecture for automated (near) real-time acquisition and represen-
tation of situational knowledge acquired from sensor data showing the three layers of
measurement, observation, and situation as well as the main components and modules,
and their interactions.

2 Architecture

In the following I present an architecture of a system for automated and (near)
real-time situational knowledge acquisition and representation in smart grids.
Figure 1 provides an overview of the system architecture.

The architecture builds on top of a distributed real-time computation system,
namely Storm.2 Storm supports real-time processing of streams of data. It allows
for the building of so-called topologies, i.e. graphs of computation. Nodes of such
a graph consist of processing logic. Edges, connecting nodes, indicate the flow of

2 http://storm-project.net
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data, i.e. streams (sequence) of tuples. Storm topology nodes can either be so-
called “spouts” and “bolts.” Nodes implement application logic, and spouts are
sources of streams. Sensing devices can, thus, be understood as Storm spouts in a
topology. In contrast, a bolt “consumes any number of input streams, does some
processing, and possibly emits new streams.” Bolts are, thus, Storm elements
implementing the components in the layers of the presented architecture. Overall,
a topology transforms streams into other streams. Specifically, in the presented
system, Storm transforms streams of tuples for measurement data into streams
of tuples for the information elements of knowledge about situations.

The architecture consists of three layers, namely the measurement, the ob-
servation, and the situation layers. Layers build on top of each other. Each layer
consists of components. Components form a Storm topology; indeed, they cor-
respond to nodes of a topology. Components may hold associations to modules
which perform certain computations. Examples of components are measurement
engine, observation engine, observation store, situation engine, and situation
store. Examples of modules are digital signal processing, machine learning, com-
plex event processing, or (rule-based) inference. Hence, modules perform the
work that is coordinated by components, which are nodes of a Storm topology
that communicate their input and output over edges of the topology graph.

3 Materials and methods

In this section, I will present the key materials and methods that are relevant
to the architecture of the discussed system. Broadly speaking, we assume the
existence of a sensor network and computer infrastructure, including hardware
and software, to process sensor data and to represent acquire knowledge.

A smart grid consists of a large number of devices, each of which performs a
specific function. Examples for sensing devices include Automated Meter Infras-
tructure (AMI, also known as “smart meter”), sensors for basic measurements
(e.g. voltage, current, storage, and continuity sensing), atmospheric conditions
(e.g. temperature, wind, moisture, solar radiation), distributed generation sen-
sors (for load balancing). Also household appliances, electric vehicles, solar pan-
els, batteries, etc. are devices of a smart grid. Naturally, computer infrastructure
including hardware, communication links, as well as software, are also elements
of a smart grid. Hence, the heterogeneity of devices, software, and systems is
huge.

Several computer language specifications and software are employed in this
work. In particular, the presented architecture adopts the Web Ontology Lan-
guage (OWL) [50] and Resource Description Framework (RDF) [29] Schema
ontology languages; the Semantic Web Rule Language (SWRL) [22]; software
implementations of knowledge bases and reasoning engines such as Pellet [34]
and HermiT [39]; RDF databases and APIs such as Apache Jena [10] and Star-
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dog3; RDF and OWL authoring tools such as Protégé.4 The architecture builds
on Storm.5 The system is implemented in Java.

Data retrieval and parsing. Sensing devices support a vast array of protocols
for the exchange and communication of data. For instance, ANSI C12.18, IEC
61107, IEC 62056, Universal Metering Interface (UMI), and the Open Smart
Grid Protocol (OSGP) are protocols used in data exchange with meters. The
type of data exchanged and the communication protocols vary. For instance IEC
61107 exchanges ASCII encoded data using a serial port. TCP/IP technology is
growing in relevance.6 Reviewing data exchange protocols implemented in smart
meters and data communication protocols such as TCP/IP is beyond the scope
of this paper. The core message is that there exist a wide array of protocols
smart grid sensing devices use to encode and communicate data.

The landscape of protocols means that computer systems that build on smart
grid sensing devices are required to face considerable heterogeneity with respect
to retrieval and parsing of data from such devices. While tedious, it is, however,
a mere engineering problem to develop interfaces between systems, including in
a system for real-time situational knowledge acquisition and representation dis-
cussed here. Such a system is required to implement interfaces to other systems
such as sensing devices, databases, or stream processing systems. Implementa-
tions for the interfaces need to include the logic necessary to continuously retrieve
and parse data, and translate it to meet the system’s format.

In our architecture data retrieval and parsing is performed by the measure-
ment engine component of the measurement layer. The component may make use
of specific modules to retrieve and parse data. A measurement engine component
emits measurements onto one or multiple streams.

Digital signal processing. Digital signal processing (DSP) techniques [37] may
be of use to enhance the signal of the measured environmental property or to
translate the signal into a pattern. There exists an array of DSP techniques,
for instance filters and the Fourier transform. A bandpass filter can be used to
enhance frequencies withing a certain band, and to suppress frequencies outside
the specified band. Such a filter can be used to enhance the signal and suppress
noise, for instance if it is known that the signal of interest lies within a certain
band frequency. Fourier transform is an algorithm that translates a signal from
its time-domain to its frequency-domain. The algorithm has many purposes.
For instance, the frequency-domain pattern of a signal can be classified using
machine learning.

In the presented architecture, DSP is implemented in modules associated
to components. Naturally, it is the knowledge acquisition task that determines
whether such a module is required for a particular problem. Modules can be

3 http://www.stardog.com
4 http://protege.stanford.edu/
5 http://storm-project.net/
6 http://en.wikipedia.org/wiki/Smart meter
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associated to components of any layer. For instance, if unprocessed observations
are to be persisted by the system then DSP may be applied by components
at the observation or situation layer. However, if, e.g., a filtered signal is to be
persisted by the observation layer or if observations are not to be persisted in
first place, then DSP may be applied by components at the measurement layer.
Doing so may considerably reduce the number of tuples forwarded in the Storm
topology. Note that it is possible to forward (DSP) processed data as well as
unprocessed data, by defining two streams.

Machine learning. Machine learning (ML) [32] is an area of artificial intelligence
in computer science. Just like DSP, it comes with array of techniques. Algorithms
have been developed for purposes such as data clustering, classification, and re-
gression. Algorithms are typically categorized by whether they are supervised
or unsupervised. Multilayer Perceptron (MLP) feedforward artificial neural net-
works [20] are an example of a supervised machine learning algorithm. A MLP
network consists of a set of neurons that form the input layer, one or more hid-
den layers, and an output layer. MLP is trained in a supervised manner using
error back-propagation learning, which consists of a forward pass and a back-
ward pass through the layers. In the forward pass, the signal resulting from the
application of an input vector is propagated through the network in a forward
direction and the actual response of the network at the output layer is recorded.
In the backward pass, the recorded response of the network at the output layer
is subtracted from a desired response, i.e. the label, to produce an error signal,
which is propagated through the network in a backward direction. In this pass
the network is adjusted in order to align the actual response with the desired
response. In supervised learning, a set of input vectors with associated labels is
used to train (calibrate) the network. Once trained, the network can be used to
classify input vectors for which the label is not known.

As for DSP, in the presented architecture, ML is implemented in modules
associated to components. It is the knowledge acquisition task that determines
whether such a module is required for a particular problem. Modules for machine
learning tend to be associated to components at the situation layer because
machine learning is typically used to acquire knowledge from observations.

Knowledge representation. Knowledge representation and reasoning [3] is an
area of artificial intelligence in computer science. An ontology, defined as an
explicit specification of a conceptualization [19], allows for formal representa-
tion of domain knowledge, meaning the concepts of some area of interest and
relations that hold among them. The Web Ontology Language [50] is today a
de-facto standard ontology language. We adopt this language in the presented
architecture and in the following brief presentation of ontology and its language
constructs.

A concept of interest to our domain is the class of AMI sensing devices
(smart meters). A physical AMI installed at a residential house is modeled in the
ontology as an individual, instance of the concept for AMI. Formally, if ami3345
is a physical AMI installed at a residential house and AMISD the concept for AMI
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Listing 1.1. Overview of example terminological and assertional axioms.

# Termino log i ca l axioms
Res ident ia lHouse v House
i s I n s t a l l e d A t v owl : ObjectProperty
hasSpat i a lLoca t i on v owl : DatatypeProperty
AMISD v Sens ingDevice u ∃ i s I n s t a l l e d A t . Res ident ia lHouse

# A s s e r t i o n a l axioms
AMISD( ami3345 )
Res ident ia lHouse ( house1345 )
i s I n s t a l l e d A t ( ami3345 , house1345 )
hasSpat i a lLoca t i on ( ami3345 , s l 6578 )
hasLongitude ( s l6578 , 502913 .319)

sensing devices, then the concept assertion AMISD(ami3345) (assertional axiom)
states that the individual ami3345 is an instance of the concept AMISD, meaning
that ami3345 is in fact a AMISD.

Naturally, a physical device relates to spatial and temporal locations. We can
model such knowledge in the ontology by relating an individual to other individ-
uals or data values. Relations between individuals are called object properties.
Relations between an individual and a data value are called datatype proper-
ties. Properties are also known as roles. The individual ami3345 relates via the
object property isInstalledAt to a physical residential house, e.g. house1345.
If ResidentialHouse is the concept for the class of residential houses, then
we can state via the concept assertion ResidentialHouse(house1345) that
the individual house house1345 is in fact a residential house. We may further
state that a residential house is a type of house. This can be expressed via
a subclass relation, formally ResidentialHouse v House (terminological ax-
iom). We can, thus, state that the AMI ami3345 is installed at the residential
house house1345, formally using the role assertion isInstalledAt(ami3345,

house1345) (assertional axiom). Furthermore, by means of the object property
hasSpatialLocation we may relate the ami3345 to a spatial location sl6578,
which is an individual instance of the concept SpatialLocation representing the
class of spatial locations. Formally, hasSpatialLocation(ami3345, sl6578).
A spatial location typically has values for latitude and longitude, perhaps also
altitude. We can represent these by means of datatype properties that relate
the spatial location with corresponding values for latitude and longitude, e.g.
hasLongitude(sl6578, 502913.319). Listing 1.1 provides an overview of the
terminological and assertional axioms discussed here as examples. An ontology
consists of terminological and assertional axioms. Terminological axioms form
the so-called TBox of a knowledge base and assertional axioms form the so-
called ABox of a knowledge base. Thus, a knowledge base is formed by a TBox
and an ABox.
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In the presented architecture, namely at the observation layer, we represent
sensor observations using the Semantic Sensor Network (SSN) ontology [23, 12].
SSN is an “ontology for describing the capabilities of sensors, the act of sensing
and the resulting observations” [12]. According to [12] the SSN ontology can be
seen from the sensor, the observation, the system, and the feature and property
perspectives. In this work, the SSN ontology serves as an upper ontology from
which to extend to accommodate domain knowledge for what property is sensed
by which sensing device, as well as observations and the result of sensing. At
a more abstract level, namely at the situation layer, we employ the Situation
Theory Ontology (STO) [25] to represent knowledge about real-world situations,
acquired from observations. The STO captures the key aspects of the situation
theory developed by Barwise and Perry [6] and extended by Devlin [14]. The
theory relates to the work on situation awareness by Endsley [16, 17], as it en-
compasses most of the concepts discussed by Endsley [25].

The Situation Theory developed by Devlin [14], formalizes the semantics of
situations by means of the expression s |= σ, read “s supports σ,” meaning that
the infon σ is “made factual” by the situation s. According to the definition by
[14], the object � R, ai, . . . , am, i � is a well-defined infon if R is an n-place
relation and a1, . . . , am (m ≤ n) are objects appropriate for the argument places
i1, . . . , im of R, and if the filling of argument places i1, . . . , im is sufficient to
satisfy the minimality conditions for R, and i = 0, 1 is the polarity. Minimality
conditions “determine which particular groups of argument roles need to be filled
in order to produce an infon” [14]. The polarity is the ‘truth value’ of the infon. If
i = 1 then the objects a1, . . . , am stand in the relation R; else the objects do not
stand in the relation R. Parameters, denoted as ȧ, make reference to arbitrary
objects of a given type. For instance, l̇ and ṫ typically denote parameters for
arbitrary objects of type spatial location and temporal location, respectively.
Anchors are a mechanism to assign values to parameters. Hence, the parameter
ṫ may anchor the value for the current time.

The SSN and STO are upper ontologies. They provide a base vocabulary
from which we can extend to accommodate domain-specific terminology and
semantics. For instance, we may extend from the SSN SensingDevice to ac-
commodate the domain-specific class of AMI sensing devices, formally AMISD v
ssn:SensingDevice. In Listing 1.1 we use a concept SensingDevice. We may
now simply qualify it as being defined by the SSN ontology as ssn:SensingDevice.
Further, we may state that any sensing device is a relevant individual in infons,
formally ssn:SensingDevice v sto:RelevantIndividual. In fact, we may use
a sensing device in an infon in order to express something about it, e.g. that it
is in a malfunction state.

In our architecture, observations are semantically enriched measurements,
consistent with the SSN ontology. Hence, the SSN ontology is used at the ob-
servation layer, more accurately by the observation engine component. Obser-
vations can be stored in a knowledge base and are typically forwarded to the
situation layer. Situations are knowledge acquired from observations, for instance
by means of machine learning. Rules, search algorithms, complex event process-
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ing, or domain-specific heuristics may also be implemented in modules to acquire
situational knowledge.

Reasoning. Ontology language constructs allow us to represent knowledge using
symbols. Consisting of a terminological and an assertional box, a knowledge base
relates in someways to a conventional relational database, which consists, too, of
a schema and instance data. In fact, knowledge represented in a knowledge base
can be represented in similar ways in a relational database. However, due to the
formal and expressive semantics of the ontology language, grounded in Descrip-
tion Logics [3], we can perform automatic symbolic reasoning. Such reasoning is
beyond the capabilities of standard relational database systems.

Reasoning can be classified in ontology reasoning and rule-based reasoning.
In ontology reasoning we use a reasoner to make explicit assertions that are
implicit to a knowledge base. For instance, in Listing 1.1 a reasoner will infer that
House(house1345), because house1345 is explicitly stated to be a residential
house and because residential houses are houses. In a complex knowledge base,
such ontology reasoning can discover implicit knowledge that is unexpected to
users. This is in particular true when knowledge from heterogeneous sources
is integrated. In rule-based reasoning we use a reasoner to make explicit the
assertions that follow from a given set of rules. Rules are of the form p → q
where p is the antecedent, i.e. a conjunction of rule atoms, and q is the rule
consequent. Upon the matching of a rule antecedent for some assertions of a
knowledge base, the rule consequent is “fired,” meaning that the rule consequent
is added as an assertion to the knowledge base. A simple example for a rule is a
test for a threshold. For instance, we may state a rule that triggers an alert when
we have a situation in which demand is beyond some threshold. The Semantic
Web Rule Language (SWRL) is a de-facto standard for the specification of rules
in OWL ontologies and knowledge bases.

In our architecture, reasoning is typically performed over a knowledge base,
i.e. represented observations or, more often, situations. Thus, first situations are
acquired from observations and knowledge for situations is represented (per-
sisted) in the knowledge base. Reasoning is then applied to make explicit knowl-
edge that is implicit to observations or situations with respect to the knowledge
base, i.e. its axioms or rules.

4 Use cases

In this section, I will present two use cases for real-time situational knowledge
acquisition and representation in smart grids. The architecture presented here
may be extended to support the discussed use cases. The first use case is adapted
from a presentation by Smeaton [42]. Given data on electricity usage, e.g. from
a smart meter, we use machine learning to classify the signal in order to acquire
knowledge for situations of usage of different home appliances, e.g. an oven.
Here we acquire knowledge for situations that are observable by smart grid
sensing devices. In second use case we represent knowledge for situations of
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malfunctions in a smart grid. Hence, in contrast to the first use case, here we
represent knowledge for situations about the smart grid.

4.1 Home appliances

This first use case is adapted from a presentation by Smeaton [42]. The author
briefly discusses the analysis of electrical power usage to classify household ap-
pliance usage. Home appliance signatures can be identified in power usage time
series and can be classified accordingly to household appliance usage. The au-
thor mentions the use of machine learning, specifically Support Vector Machines
(SVM), to build classifiers for devices. Classified devices include shower, vacuum
cleaner, kettle, microwave, toaster, electric oven. The author also suggests that
such classification can be used in smart bills or behaviour analysis. In the follow-
ing I will briefly describe how an implementation of the presented architecture
can be developed for such a use case.

Given a continuous stream of data for electrical power usage in a home,
acquired through e.g. a smart meter, an implementation for the presented archi-
tecture would require extensions at the measurement and situation layer. Specif-
ically, a measurement engine should be developed which continuously transforms
the sensor data into measurements, in this case univariate values for electrical
power usage over time. Measurements are then semantically enriched to obser-
vations. Observations may be persisted in the knowledge base. Other processing
is possible at this stage, for instance we may flag an observation to be erroneous
by using a rule, e.g. a faulty sensor reading. Observations are then forwarded to
the situation layer where the situation engine component acquires and represents
knowledge for situations of household appliance usage.

The situation engine component orchestrates various modules for this pur-
pose. At a minimum we need a machine learning module, if the methods sug-
gested by Smeaton are to be applied. We might also need some digital signal
processing, for instance to detect the starting and ending of an event. Further,
given a classified situation we will need to use a situation store component to
persist the situation in the knowledge base.

Given these extensions to the presented architecture, we can thus deploy a
distributed system for the acquisition and representation of knowledge about
situations of household appliance usage, acquired from electrical power usage
measurement. Such represented knowledge can be used, among other things,
also for the aims suggested by Smeaton, namely in smart bills or behaviour
analysis. In fact, the knowledge base can now be queried at the granularity of
the symbolic knowledge that is stored. For instance, we may ask for situations
in which the electric oven is used during the night or for longer than 15 minutes.

4.2 Fault detection

This second use case is adapted from a discussion over a few emails exchanged
between myself and Ilkka Nikander (ABB) in August 2012. The aim here is to
identify the location of faults in an electrical network based on Automated Meter
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Reading (AMR) measurements. For this purpose, we use a (CIM) model of the
electrical network and alarm messages generated by AMR meters. The location
of a fault corresponds to the location of a fuse that is common to alarming meters
in the network. Once a fault is located it is possible to dispatch a work group
by using information for the location of such groups.

In our architecture, the (CIM) model of the electrical network is knowledge
persisted in the knowledge base. Although CIM is maintained as a UML model
there exist tools which can automatically generate an RDF Schema from the
original CIM UML model [31]. Hence, it is possible to persist a CIM electri-
cal network model in a standard RDF/OWL knowledge base. Alarms generated
by AMR meters are XML/SOAP messages and these need to be processed at
the measurement layer in our architecture. Naturally, it is debatable whether
an alarm is strictly speaking a measurement. There are at least two alterna-
tives here. If an alarm is understood to be a measurement then processing it at
the measurement layer into observations and situations is appropriate. Alterna-
tively, alarms may be understood as detected situations. Hence, they could be
forwarded directly to the situation layer. A third variant could be to process
actual AMR voltage measurements at the measurement layer and let the system
trigger alarms, e.g. by implementing a rule or complex event processing at the
observation layer. Observations could be persisted in the knowledge base and
alarms are forwarded to the situation layer. At the situation layer, alarms be-
come situations, i.e. events in time which represent an alarm state in a electrical
network. Situations can be represented with infons, e.g. for the location, using
the technologies above.

Once situations for faults are represented and persisted in the knowledge base
higher level applications can make use of the acquired and represented symbolic
knowledge. As suggested above, we could make use of knowledge about the lo-
cation, and operating region, of work groups, which could be available in the
same or different knowledge base. By integrating knowledge from one or more
knowledge bases, it is possible to locate the optimal (i.e. closest available) work
group to be dispatched for the detected fault. There are at least two techniques
that allow us to infer the optimal work group: one is based on quantitative and
the other on qualitative spatial reasoning. Quantitative spatial reasoning is es-
sentially based on a GIS. In this case, GIS data for the work groups is available
and the location of the fault is given by spatial coordinates. Inference of the
optimal work group is, thus, a quantitative spatial reasoning problem, solvable
in standard GIS. Such an approach requires a GIS system and cannot be directly
executed by standard semantic technologies, given that these cannot reason over
quantitative spatial data. The second approach is based on qualitative spatial
reasoning. Here we may adopt the Region Connection Calculus [38] and a se-
mantic reasoner with support for qualitative spatial reasoning, e.g. [46]. With
this approach, the operating area of work groups is represented as RCC regions,
a mere symbol in a knowledge base. The spatial information is represented in the
knowledge base by means of qualitative relationships among regions, e.g. regions
that are externally connected, overlapping, or proper parts (a region including
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another region). Situations generated at the situation layer in our architecture
will have to relate the location of the detected fault to a region representing
the location in the knowledge base. This region relates to regions of work groups
via qualitative spatial relationships. A semantic reasoner with qualitative spatial
reasoning capabilities can now infer which work groups is optimal (i.e. closest
and available) to the location of the fault in the electrical network (the region
representing the location of the fault may be, e.g., a proper part of the region
representing the location of the group).

5 Discussion

I have presented, with some granularity, the architecture of a system for real-
time situational knowledge acquisition and representation using semantic tech-
nologies, for the special case of smart grids. The three layered architecture with
measurement, observation, and situation layers building on top of each other to
gradually abstract from sensor data to represented knowledge acquired from such
data is generic and I showed how it can be adapted to meet the aims of knowl-
edge acquisition tasks in a smart grid domain. While the architecture provides
some functionality out of the box, such as persisting observations or situations
or distributed processing, there are elements that require domain adaptations.
Most notably, we need to implement adapters to smart grid sensing devices and
we need to implement the knowledge acquisition logic, for instance by developing
a machine learning module.

The main aim of this work, and the presented system, is to argue that there is
a gap between low-level sensor measurements and high-level situational knowl-
edge, the conceptual world humans inhabit. The aim of the presented system
is to bridge this gap, let computer systems process the signal of environmental
properties measured by means of sensing devices to knowledge of interest, such
that it is represented using terminology that “make sense” to humans, as well
as machines. It is computationally relatively straightforward to access a sen-
sor measurement in a time series or iteratively process a time series. Indeed, a
time series explicitly represents sensor measurements over time. In contrast, it is
computationally more challenging to uncover knowledge about the environmen-
tal property for which the signal is measured by sensing devices. This is because
such knowledge is not explicitly represented in a time series. In fact, such knowl-
edge is implicit in a time series. Thus, it is straightforward to plot a time series
and more challenging to acquire and represent knowledge conveyed by the same
time series. However, the value of represented knowledge conveyed by a time
series is greater to humans than the value of a plot for the same time series.
In real-time domains with millions or billions of measurements such automatic
knowledge acquisition and representation seems to be paramount. Eventually,
such a system may contribute to more accurate and timely situational aware-
ness.

The importance of the discussed system is also motivated by the obvious
limitations of persisting billions or trillions of measurement data. For the Los
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Angeles Department of Water and Power, the authors of [41] highlight how
information systems for smart grid networks may be unable to “centrally store
and manage all the data that is collected.” Similarly, in [44] the authors have used
three accelerometer sensing devices sampling at 2 kHz each to measure ground
vibration. Such a sensor network generates a theoretical 6000 measurements per
second. While such a volume may still be within the processing capability of a
workstation, a sensor network consisting of three sensors is very small. While
smart meters sample at considerable lower frequency, the potential of having
million of devices installed in homes will generate measurement data volumes
that are a challenge to centrally store, and manage, e.g. retrieve and process.
In addition to smart meters, measurement data for all kinds of sensing devices
will be necessary for a grid to be smart, such as for instance weather data,
voltage, or the status of storage capacity in batteries of electric vehicles. Even
if it is technically possible to persist measurements, it may not be useful to do
so. In the use case described by Stocker et al. [44] much of the ground pavement
vibration measurement is not interesting as it represents background vibration
of road-pavement. Of interest is only vibration induced by vehicles on the road
pavement, as this is the domain for which the sensor network as deployed.

There are a number of challenges in the presented architecture. Most im-
portantly, there is currently little support for the implementation of knowledge
acquisition task. In fact, such task need to be developed by programming in
Java. This is tedious, costly, and error prone. It is, however, not immediately
obvious how to support the implementation of knowledge acquisition tasks in
more straightforward ways, not least because of the domain specificity of such
tasks. Thus, research in such methods is part of future work at which we aim.

The benefits of represented situational knowledge are numerous. As I un-
derscored above, it amounts to a considerable data compression, as symbolic
knowledge requires much less disk space than millions of measurement values,
especially if much of what is measured is not of interest. Further, symbolic situ-
ational knowledge aligned with domain terminology is more intuitive and makes
more sense to humans, than numerical time series. This applies also to com-
putational services that build on top of such a system for real-time situational
knowledge acquisition and representation. In fact, computational services can
now interact with the conceptual layer. The benefit of using ontologies is clear
in that they allow us to formally and explicitly define the semantics of domain
terminology externally to any system implementation. By committing to reuse
terminology defined in an ontology the interoperability of systems is greater [33,
49].

Semantic web technologies also come with a number of interesting advan-
tages. First, the specifications for ontology, rule, and query languages are open
and de-facto W3C standards. Second, there is an active community around the
technologies that keeps developing systems and software which implement the
specifications. For instance, there exist a number of RDF databases and OWL
reasoners. OWL reasoners also come with a number of advantages, such as au-
tomated ontology and rule-based reasoning, consistency checking, and incon-
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sistency explanation services. RDF databases support storage and retrieval of
knowledge using de-facto standard query languages, such as SPARQL [36].

The work presented here borrows considerably from related work by the
author [45, 44, 43, 46]. In fact, what I presented here is an adaptation of this
work to the domain of smart grids, presenting the architecture how it would
have to be adapted to meet the aims of the two discussed use cases. In future
work, the aim is to actually develop one or more use cases, not necessarily those
discussed here. However, in order to do so it will be of paramount importance
to be able to access to real-time smart grid sensor data, in order to perform real
experiments.

6 Conclusions

I have presented and discussed in details the architecture, materials, and meth-
ods relevant to a system for the automated, near real-time, representation of
situational knowledge acquired from sensor data in a state-of-the-art knowledge
base using de-facto standard, open, and free knowledge representation languages
and related systems. The architecture builds on top of a distributed system for
real-time processing of data streams. I presented the layers, components, and
modules of the architecture, their role and interactions. The materials and meth-
ods required for the implementation of the architecture in software are presented
and discussed for how they are used in the architecture. In order to adapt the
generic architecture to the domain of smart grids I have presented two use cases
that are relevant to the domain. As shown, the presented architecture can be
adapted to the needs of the use cases. In future work we aim at performing real
experiments by implementing the presented use cases or other use cases that are
of interest to the domain of smart grids. To do so I will need real sensor data,
which was not provided for this work.
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